

If you do not monitor it you can not manage it. Tools for monitoring pasture growth.

Penn State Extension

Pasture Stick

- Forage height used to estimate forage mass

 lbs/ac/in
- Cost Low
- Accuracy Good – Information on Stick gives a good
 - estimate. – Can be improved if calibrated for your own pasture.
- Easy to use

Penn State Extension

Plate Meter

- Forage density
- Also called a rising plate meter, falling plate meter, disk meter.
- Cost Moderate (\$50) to High (\$500)
- Accuracy Good, if calibrated correctly.
- Different calibrations for season, forage type.

Penn State Extension

C-Dax Pasture Meter

- Measures forage height at 20 mm increments

 200 measurements per second at 12 mph
- Forage mass kg DM / ha (calculated based on equations for different seasons and pasture mixes)

)

- Cost High (\$____
- Forage height and GPS coordinates
 recorded
- Downloads directly to computer.
- Not readily available in US but used in NZ on commercial dairy farms.

Penn State Extension

Estimating Dry Matter Intake

- Forage height is a good indication of the amount of dry matter
- 1 inch = about 200 pounds DM/acre
 - Pre-grazing
 - Post-grazing
 - During grazing
 - 6 inches x 200 lbs. = 1200 lbs of DM intake
 - 2 acres x 1200 lbs = 2400 lbs
 - If you have 100 cows = 24 lbs DMI/cow

Estimating Dry Matter Intake

- 6 inches x 200 lbs. = 1200 lbs of DM intake
- 2 acres x 1200 lbs = 2400 lbs
- (If you have100 cows= 24 lbs DMI/cow
- So if you have 100 of those 1000 lb. Jersey cows, how long can you leave them on this 2 acres before they need to be rotated?

Assuming they actually utilize 70% of those 2400 lbs. available – about 16 hours – $\frac{3}{4}$ of a day!

Penn State Extension

Managing Surplus

- Mechanical harvest
- Stockpile for later in season
- Flexible stocking rate
- Rotational grazing

Penn State Extension

Managing Surplus: Mechanical Harvest

- Designate a portion of pasture to be harvested for hay or haylage in the spring and grazed later in the year.
- Produces good quality forage for times of shortage
- Example:
 - 60 dairy cows
 - Spring: 40 acres pasture + 20 acres haylage
 - Summer / Fall: 60 acres pasture

Managing Surplus: Stockpile Grazing

- Grazing forage that grew earlier in the season — Late summer growth grazed in Fall or Winter
- Some species stockpile better then others
 - Tall Fescue

Penn State Extension

Managing Surplus: Flexible stocking rate

- Have ability to change stocking rate to make
 - best use of available forage
 - Take land out of grazing rotation
 - Mechanical Harvest
 - Stockpile
 - Add animals

• Does not work as well for dairy cows or beef cow-calf

Penn State Extension

Managing Surplus: Rotational Grazing

• Higher stocking density, shorter time in paddock

Penn State Extension

Managing Shortage

- Diversified cropping system
- Rotational Grazing
- Irrigation
- Supplemental Feed
- Flexible stocking rate

Penn State Extension

Managing Shortage: Diversified Cropping System

Managing Shortage: Diversified Cropping System

Penn State Extension

Managing Shortage: rotational grazing

- Lower stocking density, longer time on paddock
- Avoid overgrazing

•

- Lose forage species and susceptible to weeds
- Use sacrifice area and supplemental feed to minimize damage

Ma	naging Sho	rtage:	Suppleme	ental fee
		No Supplement	Concentrate Supplement	
	Supplement DMI, kg/d	0.8	8.6	
	Pasture DMI, kg/d	17.5	15.5	
	Total DMI, kg/d	18.3	24.1	
	Milk, kg/d	19.1	29.7	
	Milk Fat, %	3.82	3.29	
	Protein, %	2.98	3.08	
	MUN, mg/dl	13.9	11.6	
Bargo etal.	, 2002			
Penn St	ate Extension			

Managing Shortage: Supplemental feed

	No Supplement	Grass Silage	Corn Silage	Wheat Silage			
Pasture DMI, kg/day	12.9	11.2	8.9	11.0			
Supplement DMI, kg/day	0.0	3.0	6.3	3.6			
Total DMI, kg/day	12.9	14.2	15.3	14.7			
Milk, kg/d	17.1	18.4	19.8	18.0			
Milk Fat, %	3.98	3.99	4.15	4.02			
Milk Protein, %	3.21	3.14	3.28	3.17			
MUN, mmol/kg	3.73	3.27	2.52	3.43			
Morrison and Patterson, 2007							
Penn State Extension							

Managing Shortage: Flexible Stocking Rate

- Early weaning
 - Lowers forage intake of the mother
 mothers will consume 25% less DM
 - Limits grass trampling by calf
- Culling/selling livestock
 - Didn't breed
 - Offspring is profit
 - Low milk production
 - Health issues

Penn State Extension

